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ABSTRACT

Solar thermal systems enhance wastewater treatment efficiency, preservation, and processing of
agricultural produce, facilitating industrial/domestic heating and cooling. They provide cost-effective,
green energy harvesting, storage, and conversion. However, the efficiency and durability of those
devices largely depend on the quality of their absorbing medium. Hence, researchers channeled their
focus toward enhancing their performance. This prompted the use of MXene for microstructural
modification of solar thermal absorbers. MXene has shown outstanding photothermal conversion
characteristics and excellent stability in strong alkaline and acidic solutions. Yet, recent literature
reported lower efficiency in solar thermal systems. This review focuses on the latest microstructural
modifications of the solar thermal absorber with MXene as a microstructural modifier, as well as their
influence on thermal conductivity, strength, photothermal conversion, and corrosion characteristics.
The study aims to find the root of the basic challenges in solar thermal systems (STSs) and to create
opportunities for integration, processing, and manufacturing of a large and rapidly expanding

family of STSs with improved characteristics and
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absorbers. The study highlights the benefits of powder metallurgy in fabricating MXene-reinforced
metallic solar thermal absorbers and suggests exploring the potential of MXene in this previously
unexplored area.

Keywords: Corrosion behavior, mechanical properties, microstructural modification, MXene, photothermal

conversion, solar thermal absorber, solar thermal systems, thermal conductivity

INTRODUCTION

Solar thermal systems (STSs) increase energy efficiency and help in improving
environmental factors that impact human health. They are basic for both life and
environmental sustenance. STSs’ affordability, sustainability, and pollution-free sources
of energy make them novel and renewable solutions for agricultural, domestic, and
industrial heating and cooling applications. Al-Mamun et al. (2023) emphasized that one
of the most practical uses of solar energy, which is a readily available, affordable, and
ecologically harmless energy source to meet global energy demands, is the solar thermal
system. However, recent studies of STSs revealed lower efficiency (Bogdanovics et al.,
2024; Goel et al., 2023). According to Garcia-Segura et al. (2021), erosion and corrosion
were recognized as the main issues in solar stills. The study further identified 16 types of
degradation in solar reflectors for Concentrated Solar Thermal (CST) systems and attributed
the defects to the synergistic relationship with their environmental agents. Tarno, Masuri,
Ariff and Musa (2024) reported that during their operational sequences, solar absorbers
were confronted with many challenges, such as the risk of atmospheric attack, thermal
fatigue, and cracks resulting in failure (Figure 1).

Xu et al., (2025) studied a novel solar absorber design using a three-layer periodic
structure of T;-Al,O;-T; circular composites on a T-Al,O; substrate, achieving the highest
solar absorption (average >97.8%, minimum >90%) across a broad spectrum (240 nm to 3354
nm) with high thermal stability, However, while the design demonstrates significant potential
for solar energy applications, its reliance on precise periodic structures may pose fabrication
complexity and material cost, which could impact large-scale manufacturing. Ali et al. (2024)
investigated graphene-based solar absorber structure and concluded that it can be efficiently
used for harvesting solar energy. Dumka et al. (2024) enhanced solar still performance by
integrating wax-filled rods and reported a 6.3% reduction in distillate production costs.
Bady et al. (2024) modified and investigated solar distillers that utilize copper tubes filled
with PCM are highly beneficial. Nie et al. (2024) improved the mechanical properties of
Al by introducing Cu reinforcement. The study revealed that Copper (Cu) atoms diffuse
into aluminum (Al) particles during the PM process, filling the gaps in the Al particles and
strengthening their interfacial bond. The improvement of the alloy’s mechanical characteristics
is another benefit of the CuAl: phase’s development. The materials were recommended for
applications in the aerospace industry as well as in the automotive industry. Suraparaju et
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Figure 1. (a) Corroded absorber in a solar dryer; (b) Corroded solar dryer; (c) Corroded absorber in a solar
still; and (d) Corroded absorber solar still. Pictures taken from Sokoto Energy Research Centre, Usmanu
Danfodiyo University, Sokoto, Nigeria

al. (2025) investigate the combination of nanoparticle-infused composite energy storage
materials with a unique double-finned absorber in a single-slope solar still. The finding
reveals that coal nanoparticles combined with paraffin wax increase thermal conductivity by
52.61% at optimal concentration. The double-finned absorber improves thermal distribution
by increasing surface area for heat absorption, resulting in a 123% increase in distillate yield,
peak absorber temperatures of 68°C, and thermal efficiency rising to 51.38%.

The systems continue to face challenges of low efficiency (Fayaz, et al., 2022; Thakur
et al., 2022). These challenges prompted the integration of MXene as a microstructural
modifier in solar thermal absorbers (Alhamada et al., 2022; Aslfattahi et al., 2020, 2021; El
Hadi Attia et al., 2023; Mao et al., 2022; Panda et al., 2024; Singh et al., 2023; Solangi et al.,
2022; Thakur et al., 2022; Zhao et al., 2023; Y. Zhou et al., 2024). This was due to MXene’s
transparency, plasmonic behavior, and the nature of its high surface and tunable area due to its
layered structure, strong chemical bonding, and tunable surface chemistry. MXene, as a family
member of the two-dimensional (2D) materials, mainly carbides, nitrides, and carbonatites
of transition metal, has shown outstanding photothermal conversion characteristics and
demonstrated excellent stability in both strong alkaline and acidic solutions.

This study has been conducted through a comprehensive review of academic literature
and presents a review of the latest microstructural modifications of the absorbers in STSs
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with MXene as an absorber modifier, as well as their influence on thermal conductivity,
photothermal conversion, corrosion characteristics, and behaviors under the action of
mechanical loading. This paper identifies the most suitable types of materials for solar
thermal absorbers and their manufacturing processes and discusses their disadvantages and
implications. Scientific contributions to the development of MXene-reinforced aluminum
solar-thermal absorbers with the optimal microstructure were offered to promote the
efficiency of STSs and unlock the potential of MXene that had hitherto remained closed.
Thus, the need for a better and wider understanding of the impact of MXene on the basic
qualities of solar thermal absorbers in STSs at certain mechanical and thermal loadings,
as well as its corrosive and atmospheric stabilities, prompted this study.

TYPES OF SOLAR THERMAL SYSTEMS

STSs absorb and convert electromagnetic radiation released from the sun into heat, which
is regarded as solar thermal energy, and are used to directly heat fluid (Tarno, Masuri, Ariff,
& Musa, 2024). Another option is to cause the movement of electrons in a conducting
material, which is referred to as a photovoltaic system (Kalidasan et al., 2024). Absorber
is the fundamental component of STSs that directly absorbs the electromagnetic radiation
from the sun and converts it to thermal energy. In solar thermal systems, the principles
lie in exposing the surface of a dark thermal conducting material to the electromagnetic
radiation of sunlight. This resulted in the absorption of radiation and its conversion into
thermal energy. The energy is transferred to a medium, usually water or air, for utilization.
Figure 2 demonstrates common solar energy utilization.

STSs may be active systems or passive types. Active solar systems have moving parts
or sophisticated electronic packages, such as automatic sun tracking systems attached.
The solar thermal absorber is the specific part of the collector that directly absorbs solar
energy and produces heat, frequently using an absorber plate with a unique coating. Passive
solar systems use thermal mass as a heat-preserving substance in conjunction with natural
absorption techniques to reduce solar radiation. When no optical concentration design is
incorporated in an STS, the system is a non-concentrating solar thermal collector (STC)
and can achieve a temperature range of 60°C to 80°C. When temperatures higher than 80°C
are needed, the radiation should be concentrated (Vahidhosseini et al., 2024). Figure 3
shows a solar still incorporated with mirror solar radiation concentration (Figure 3a) and
a non-concentrating solar dryer (Figure 3b).

The absorber, the central component of all solar collectors, captures sunlight, converts
it into heat as efficiently as possible, and transfers it to a circulating fluid with the least heat
loss. The efficiency of every solar thermal system depends on the quality of its absorbing
unit. However, geometrical qualities such as thickness, surface area exposed to the sun,
density, material type, manufacturing, and finishing processes of the absorber all affect
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Figure 2. Solar thermal energy for major industrial, agricultural, and domestic utilizations

Figure 3. Concentrating and non-concentrating STSs (a) Concentrating solar still; (b) non-concentrating
solar dryer; (c) hybrid solar dryer, and (d) non-concentrating evacuated solar water heater. Pictures taken
from Sokoto Energy Research Centre, Usmanu Danfodiyo University, Sokoto, Nigeria
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absorbance. Solar energy concentrators employ accessories such as mirrors, lenses, or
parabolic surface reflectors to direct and concentrate sunlight into the absorbing material.
Typically, the working fluid, such as water, air, nano-enriched water, or synthetic oil, is
passed through the receiver tube. To reduce heat losses and achieve higher temperatures than
anon-concentrating collector. An image concentrator concentrates STSs to focus and direct
sunlight onto a small absorbing area. A hybrid STS, as shown in Figure 3(c), comprises
a solar panel performing two functions: an external thermal absorber and a direct current
electricity source for supplying an electric inverter, which provides current to a circuit
containing a resistor for heat generation and to an electric motor for air blowing. Evacuated
STSs, as shown in Figure 3(d), have highly efficient insulation due to their vacuum.

This vacuum significantly reduces heat loss, enabling these collectors to effectively
capture and retain solar energy. The evacuated collectors utilize an inner metallic heat
pipe or U-tube, as shown in Figure 3(d). The heat pipe absorbs and transfers the heat to a
heat exchanger, which converts it to energy and transfers it to a working fluid circulating
throughout the solar system. They consist of glass tubes with double walls coated with a
unique substance with a low thermal emittance and a high solar absorbance. The vacuum
created serves as a better insulator. Thermal applications are based on the constructional
features, working principles, and operational sequences of thermal systems. Figure 4 depicts
the major applications of STSs.

However, being exposed to an atmosphere, evacuated tubes (STSs) could be affected
by weather cycles such as seasons and day-night frequencies. El-Fakharany et al. (2024)
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Figure 4. STSs basic applications
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attempted to improve the performance of evacuated STSs by placing a PCM (paraffin
C20—C33) as a backing bar for the absorber. The highest air outlet temperature measured
was 106°C at 0.015 kg/s, and the highest thermal efficiency measured was 64.5% at 0.03
kg/s. Evacuated tube solar receivers are more expensive but effective than non-evacuated
ones. Nonetheless, the benefits of a non-evacuated solar receiver include its affordable
price, ease of assembly, and superior thermal and optical properties.

MATERIALS FOR SOLAR THERMAL ABSORBER

Solar thermal systems require good strength. They must also have efficient heat conduction,
corrosion resistance, and photo-thermal qualities (Kalidasan et al., 2024; Samylingam et al.,
2021; Zhao et al., 2023). The incoming radiation, thickness, refractive index, and extinction
coefficient of the material all influence its transmittance, reflectance, and absorbance. Metallic
materials are widely used as absorbers due to their structural makeup. A sea of electrons
surrounds the matrix of electrons in metals. The sea facilitates conductivity and corrosion
resistance. The coating deposited on the surface of the absorber enhances the STC absorber’s
photothermal characteristics (Sethi et al., 2024). A material composed of stannic selenide
(SnSe,), aluminum (Al), and titanium (Ti) with graphene was developed. The contribution
of this design has been investigated in 4-atm regimes, with 0.22, 0.8, 2.46, and 2.85 being
the optimal four wavelengths (micrometers). In the 2.4—3 micrometer bandwidth, the current
absorption exceeds 97% (97.4%), surpasses 95% from 0.2—1 micrometer, and extracts 90.3%
for the 2800 nanometer band between 0.2 and 3.0 wavelength regimes. A heat treatment
process was used by Tarno, Masuri, Ariff, Daura et al. (2024), where mild steel was carburized
for enhanced mechanical and corrosion characteristics. With the formation of a corrosion
phase, the material was recommended for STS applications. Additionally, many studies have
attempted to enhance the absorber’s thermal conductivity and corrosion behavior through one
or more approaches created by advanced engineering materials and composites (Alhamada
et al., 2022; Tarno, Masuri, Ariff & Musa, 2024; Zhao et al., 2023). Other studies employ
coating on the surface of the absorber (Sethi et al., 2024).

The literature may indicate that MXene, a family of two-dimensional (2D) transition
metal nitrides, carbides, and carbonates, has shown outstanding photothermal conversion
characteristics and excellent stability in strong alkaline and acidic solutions. However, the
application of MXene as a reinforcement in a metal matrix for modifying microstructures
of metallic solar thermal absorbers was not reported.

MXENE AS MICROSTRUCTURAL MODIFIER

Microstructural modification in solar thermal absorbers is critical for developing or
transforming inherited structures into an improved structure with new phases that can
withstand oxidation at high temperatures. By optimizing the material’s structure at the
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microscopic level, the basic qualities of the absorber, such as photothermal conversion,
thermal conductivity, and strength, can be significantly enhanced. These modifications
enable better tribology, reduce heat losses, and increase the lifespan of the STSs under
high and fluctuating temperatures.

According to Fan et al. (2022), Ti;C,T, MXenes, known for their higher conductivity
ranging from 6000 to 8000 S cm™, offer a highly promising composite for improved solar
energy capture. Figure 5 presents images produced by scanning electron microscope with (a)
MAX and multilayered MXene in (b), (¢) MXene nanosheet and MXene colloid solution,
and (d) X-ray diffraction patterns of MXene and MAX with their common peaks and h-k-1
values (Wu et al., 2023). Figure 6 demonstrates images from SEM with a thin-layered
material in (a) and an accordion-like multilayered material in (b)—(d). Figure 7. Compared
with Ti;AlC,, Ti;C,T, missed an intensity peak at 20=39°, attributed to the elimination of
Al Hence, such properties allow MXene to be used in solar thermal absorbers of various
STSs. The study by Fayaz et al. (2022) attempts to improve the temperature of the absorber
plate in a solar still using titanium particles. The study reported that integrating titanium
particles improved the thermal behavior of the absorber plate.

Spm
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PDF/S2-0875
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Figure 5. Images produced by scanning electron microscope with: (a) MAX; (b) multilayered MXene; (c)
MXene nanosheet and MXene colloid solution; and (d) X-ray diffraction patterns of MXene and MAX
(Bai & Wang, 2023)
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Figure 6. Images captured by SEM with: (a) thin and multi-layered materials (a); (b-d) with an accordion-
like multilayered material (Wu et al., 2023)
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Figure 7. X-ray diffraction spectra (XRD) of intrinsic Ti;C,T, (red), Ti;AlC, (indicated in blue), and standard
Ti;AlC, (represented in pink color) (Wu et al., 2023)

According to Kumar et al. (2023), MXenes have a unique nanostructure, which is
planar, that exhibits superior optical and thermophysical qualities. The structure makes
them qualify for a variety of applications in STSs. Panda et al. (2024), while describing
the basic structure of MXene, stressed that they were stacked in several stable layers that
featured an irregular exfoliated morphology made up of two-dimensional nanosheets that
were transitional carbides. Aluminum is separated from layered MAX phases by chemically
treating the material with hydrofluoric acid to create this exfoliated structure. The layered
exfoliated assemblage of MXene nanosheets, featuring pore walls attached in the form of
carbides of transition metal, Ti;C,, V,C, Mo,C, and Nb,C, the’ strong thermal conductivity
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of transitional carbides facilitates the liquidus and solidus phenomenon of phase-change
material inside the 2D nanosheet structure without any leakage.

This suggests the presence of a eutectic phase change material (PCM), a long molecular
chain compound, between these MXene’s exfoliated layers. Blocks are stacked tightly,
exposing a rough surface in the MAX phase, Figure 8(a). The dense structure of MAX
was changed into the multilayer structure of MXene by etching the layers of aluminum
elements Figure 8(b). The X-ray diffraction phase patterns of the MAX phase and MXene
are displayed in Figure 8(c). It is possible to identify the distinctive MAX phase signals at
8.5°(002),33.9°(101), 39.0° (104), and 41.6° (105) (Xu et al., 2023). In contrast, MXene’s
(002) peak widens and moves from 9.5° to 6.2°. In the meantime, the peaks in the MXene
XRD pattern that corresponded to the (101), (104), and (105) faces nearly vanished.
Moreover, the Al element is symbolized by the (104) peak disappearing.

XPS was used to examine the components of MXene, as shown in Figure 8(d).
Orbitals F 1s, Ti 2p, C 1s, and O 1s are responsible for the four distinctive signals detected
at 685 electron Volt, 530 electron Volt, 459 electron Volt, and 285 eV, respectively. The
X-ray diffraction spectra patterns of MXene, X-ray diffraction MXene-TiO,, and that of
reduced MXene-TiOx were recorded at a temperature of 600°C, as displayed in Figure 9.
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Figure 8. Micrograph and XRD images related to: (a) MAX; (b) MXene, (c) XRD image showing phase
patterns of MAX/MXene; and (d) XPS survey representation of MXene (Xu et al., 2023)
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Figure 9. (a) XRD images showing phase patterns of MXene, MXene-TiO,,@ 600 °C; (b) XRD images of
MXene-TiO, under different temperatures; (c) SEM images of Ti;AlC,; (d) MXene; (e) Anatase MXene-
TiO,; and (f) 600 °C reduced MXene-TiO, (W. Zhou et al., 2024)

The anatase TiO, peaks are traced at 20 = 27.37° and 48.12°, as in Figure 9(a), indicating
that the nano-spheres that were previously linked to the MXene-reinforced developed
composites prior to the reduction phenomenon were anatase TiO,. As Figure 9(b) illustrates,
the reduction impact peaked at 600°C following the reduction. Moreover, the anatase TiO,/
MXene composite, Ti;AIC,, MXene, and 600°C morphologies and microstructures are
demonstrated in Figure 9(c)—(f).

The SEM images of the few-layered and multilayered Ti;C,T, MXene are displayed
in Figure 10. The multilayered Ti;C,T, MXene exhibits a loose multilayer microstructure
[Figure 10(a)]. The few-layered Ti;C,T, MXene was observed to have a practically
transparent quality, as illustrated by Figure 10(b). This suggests that the multilayered
Ti;C,T, MXene has been exfoliated to create ultrathin, few- or single-layered Ti;C,T,
MXene nanosheets. A collection of diffraction peaks characteristic of a hexagonal crystal
structure can be seen in the XRD pattern of Ti;C, T, powders, as in Figure 10(c). The (0 0
2) peak at 20 = 9.51° in these diffraction peaks is often linked to an interlayer spacing of
9.32 A (Zheng et al., 2022)

Singh et al. (2023) observed the peak of MXene at 36.76°, corresponding to the (0 0
8) crystal plane. The XRD pattern of the TiO, photoelectrodes incorporated with MXene
shows diffractive peaks from FTO substrates along with diffraction peaks at various 2 theta
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Figure 10. SEM images of: (a) a multilayered; (b) a few-layered Ti;C,T, MXene; and (¢c) XRD phase patterns
of Ti;AlC, powders with few-layered Ti;C,T, MXene (Zheng et al., 2022)

degrees for anatase TiO, (JCPDS - 21-1272) at 25.48°, 37.84°, 48.25°, 54.20°, 55.30°,
61.70°, and 62.92°. The angles correspond to (10 1),(004),(200),(105),(211),(213),
and (2 0 4) planes. The phase pattern may change with a metal matrix, such as aluminum,
reinforced with MXene. The peculiar properties of aluminum, such as its lightness and
non-toxicity, being second only to copper in terms of thermal conductivity, coupled with
its lightness, make it almost one-third the density of steel and copper. Aluminum may be
next after silver when it comes to conductance by weight ratios; while copper is 8.9 g/cm?,
aluminum is 2.7 g/cm?®. Aluminum is relatively cheaper compared to copper and silver.
Aluminum softens, boils, and recrystallizes at approximately 350°C, 2470°C, and 150°C,
respectively (Tarno, Masuri, Ariff, & Musa, 2024). An oxide film rapidly forms on its
surface when exposed to the atmosphere, preventing further attacks. However, aluminum is
weak, unstable, and prone to corrosion. It is weak in acids and bases. According to R. Wang
et al. (2024), the oxidation characteristics of aluminum and its basic alloys are significant
in its applications in industries. The study attributed the formation process of the film to the
action of OH™ hydrocracking in water under the electrochemical environment of applying
a small current, and the O in the water molecule forms two distinct oxide films with the
Al matrix in the form of O* and OH.

MANUFACTURING PROCESSES OF SOLAR THERMAL ABSORBER
THROUGH COMPOSITE TECHNOLOGY

Nano and composite technologies enable microstructural alteration through heat, pressure,
or both to distribute reinforcement uniformly and maintain particle homogeneity in
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the matrix. The fundamental processes are (1) solid, (2) fusion, and 3D manufacturing
techniques. A detailed outline of each process is shown in Figure 12. The primary part of
the composite is called the matrix, while the secondary part is known as reinforcement. The
purpose is to induce properties that are neither obtainable in the matrix nor the reinforcement
but can be obtained in the final product. For instance, in a study by Ariff et al. (2023) a
natural fiber was used alongside a polymer material to develop a rice husk-PU reinforced
composite for a sound barrier technology. Composites are named according to the matrix
composition and reinforcement Figure 11. Thus, composites are categorized as (1) metal
matrix composites, (2) ceramic matrix composites, and (3) polymer matrix composites.

| Metal matrix composites |

¥
v i

| Matrix | | Reinforcements |
Ferrous & Non-ferrous &
ferrous alloys || non-ferrous alloys Inorganic
) ) Organic
¥ ¥ 0
Iron & steels |Oxides|(Borides||Nitrides | Carbides|| Others | ¥ i 1
Industrial waste || Agro waste Polymeric
waste

Figure 11. Matrix and reinforcements for the fabrication of MMCs

Metal Matrix Composites

MMCs are advanced materials with improved electro-mechanical qualities and good
thermal and chemical stabilities. Those characteristics make those materials suitable for
various applications ranging from cutting tools and transportation through consumer
electronics, defense, and space to acrospace, marine, solar thermal absorbers and packaging
industries (Seetharaman & Gupta, 2021). Hence, the nano and composite approaches could
improve the low mechanical qualities, thermal, and chemical stabilities in solar thermal
absorbers. The commonest MMCs are (1) continuous fiber or sheet-reinforced CFMMCs,
(2) particle-reinforced PRMMC:s, and (3) short fiber or whisker SFMMC:s.

Particle-Reinforced

This consists of metal matrix and equiaxed ceramic reinforcements mostly carbides (TiC,
SiC, B,C, and NbC.) borides (Titanium boride TiB,), oxides (Alumina Al,O;), carbon
nanoparticle (Graphene GNPs), nitrides of Aluminum (AIN), titanium (TiN), boron (BN),
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and silicon (Si;Ny). The size of reinforced particles in MMCs may range from millimeters
to nanoscale (M. Wang et al., 2024). These materials have the potential to improve metallic
solar thermal absorbers.

Manufacturing Processes of Composites for Solar Thermal Absorbers

The fabrication of MMC can be achieved through fusion, such as casting, solid-state
techniques, such as PM, recrystallization, and/or additive manufacturing. A study was
conducted on the hardness and microstructural development of Sn-5Sb-xCNT/Cu solder
junctions composite through PM, and enhanced resistance to indentation was observed at
the solder junctions of the composite (Dele-Afolabi et al., 2020). Composite materials were
developed via plasma spraying to create in-situ and ex-situ CrB2 coatings. A low oxygen
permeability phase was produced during the oxidation, and good oxidation resistance was
measured in Cr-B,C (Guo et al., 2023). Tarno, Masuri, Ariff, and Musa (2024) modified
aluminum microstructure via recrystallization by reinforcing reduced iron and chromium
oxide in its matrix. The study reveals improved strength and corrosion behavior. Generally,
composites can be manufactured through fusion, solid state, and 3-dimensional (3D) or
additive manufacturing processes, as depicted in Figure 12. Fusion includes casting and
infiltration techniques (Chen et al., 2023).

Solid-state processes include PM, diffusion bonding, recrystallization, spray deposition,
and hot isostatic pressing (Ashrafi et al., 2021). Additive manufacturing comprises material
extrusion, directed energy deposition, vat photopolymerization, binder jetting, and powder
bed fusion (Yang et al., 2024). Er et al. (2023) adopted one of the additive manufacturing
techniques depicted in Figure 12, a Vat Photopolymerization technique, to 3D print phase
change material/resin composites using an SLA printer. The thermophysical properties
and solar thermal energy storage performance of the material were investigated. The
study reveals a 50% phase change material (PCM) ratio as optimal for the fabricated
components, achieving a latent heat enthalpy of 83.7 J/g and a tensile strength of 14.02
MPa. This balance highlights the material’s effectiveness in thermal energy storage while
maintaining reasonable mechanical integrity. However, this process requires high energy
and the use of complex equipment. Tarno, Masuri, Ariff, and Musa (2024) utilize a solid-
state technique called the recrystallization process depicted in Figure 12 to successfully
reinforce the aluminum matrix with iron and chromite. The authors recommend the material
for solar thermal absorber applications.

However, the study lacks a detailed explanation of the solubility of reinforcements
in the matrix. Lee et al. (2024) developed a reversible solar heating and radiative cooling
device that uses a mechanically guided 3D architecture that alternates between heating and
cooling modes under uniaxial strain. The device achieved high heating (59.5°C) and cooling
(-11.9°C) temperatures, which utilize multilayered films and black paint-coated polyimide
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films as solar thermal absorbers. Qi et al. (2024) employed a fusion technique depicted
by Figure 12, multi-sided unidirectional freeze-casting, to develop a biomimetic acrogel.
The study reveals improved photothermal conversion (95.2%) and thermal conductivity
(0.3517 W/m-K), reducing oil flow resistance and achieving high oil retention efficiency
(>92%). Figure 12 categorizes the major routes of manufacturing composites used in solar
thermal absorbers, such as solid technique, fusion technique, and 3D printing technique.

However, among all the processes listed, PM has a unique advantage in that it not
only allows for material density as a controllable variable but also considers energy
consumption, production speed, environmental factors, complexity, cost, dimensional
precision, and surface finishing. According to Saberi and Oveisi (2022), PM is a suitable
approach to producing Cu/Al composite powders. Every casting process requires a melting
furnace, mold building, and pattern making, which are highly energy-consuming. These
disadvantages apply to other processes that require melting and pouring of the parent metal,
such as casting processes, liquid metal infiltration, and spray co-deposition.

A die and a corresponding die-casting machine are required for die-casting. The
machine is required to force the molten metal into the die cavity between the two halves of
the die. This also involves the application of high pressure (T. Wang et al., 2022). Casting
has disadvantages, including being expensive and complex mold design, more material
waste, the possibility of flaws impacting mechanical properties, more energy usage, a slower

Investment casting,
Vibration casting,
Vacuum casting,

METAL Rheo casting,
?gcl:-LDN?gﬁgg MATRIX Sque_eze casting,
Heat & Pressure COMPOSITES Stir casting,
Holding Time FOR SOLAR C_entrlfugal casting,
THERMAL Die casting, Combo
@ ABSORBERS casting, Freeze-

Diffusion bonding, casting, Infiltration

Recrystallization, Spray
deposition, & Hot
Isostatic pressing

Material extrusion,
Directed energy,
deposition, Vat
photopolymerization,
Binder jetting, and
Powder bed fusion

Figure 12. Composites approach to manufacturing solar thermal absorber
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rate of manufacturing, and a more significant environmental impact. In contrast, PM is a
more appealing choice for some applications due to its advantages in material efficiency,
dimensional accuracy, energy efficiency, and production speed (Wang et al., 2025).

The inert gas involvement in the vacuum casting process makes it very expensive,
time-consuming, and highly energy-consuming. A homogeneous and even distribution of
reinforcement and other defects, such as porosity, wettability, stirrer blade oxidation at
high temperatures, and mixing rate of reinforcement within the matrix, are all key concerns
in the stir casting process. A decreased surface roughness is traced in the base metal
alloys submitted to vacuum casting, like that of titanium, compared to base metal alloys
submitted to acetylene-oxygen flame casting (Kandpal et al., 2022). Casting processes are
characterized by carbon emissions and environmental impact, specific energy consumption,
production cycle time, and cost estimation.

Processes such as binder jetting, vat photopolymerization, powder bed fusion, metal
extrusion, and sheet lamination are the most common 3D composite fabrication methods
(Nugroho et al., 2022). However, additive manufacturing requires the use of sophisticated
and costly equipment. For instance, the basic principles of powder bed fusion lie in
developing the product layer by layer (Singh et al., 2020). Beams such as electrons, lasers,
and infrared are required as heat sources, making the process expensive and complex, and
having health and environmental impacts. The process is characterized by residual stress
and distortion. According to Li et al. (2024), however, the Vat Photopolymerization (VPP)
process has significant disadvantages in forming designed geometrical characteristics, slurry
preparation, forming precision, defect management, and multi-material printing. Complex
tools and expensive energy sources are involved in the process. Printing of highly dense
and defect-free materials with outstanding mechanical properties remains a major challenge
with aluminum alloys developed via laser powder bed fusion. (Zhou et al., 2023).

Several disadvantages become apparent when comparing 3D fabrication processes to
PM for fabricating aluminum composites. A heterogeneous microstructured aluminum alloy
was fabricated through wire-arc 3D. It is revealed that the microstructure is sensitive to the
printing and composition conditions. PM has the unique advantage of making density a
controlled variable, with low energy consumption and environmental compatibility. Figure
13 depicts the basic PM process and parameters. Using the PM technique, items can also
be fabricated with better and more precise geometrical characteristics (Zhou et al., 2023).

INFLUENCE OF MXENE ON THERMAL CONDUCTIVITY AND
PHOTOTHERMAL CONVERSION OF SOLAR THERMAL ABSORBER

M. Ding et al. (2023) employ Ti;AlC, phase, lithium fluoride (LiF), and MXene composite
in Cellulose nanofibrils to improve Photo-thermal conversion aerogels under wet and
dry conditions in a solar still. The study demonstrates the use of cellulose nanofibrils in
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Sintering/ Temperature/
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Figure 13. Powder metallurgy process and parameters

fabricating a solar-thermal desalination system using M Xene composite aerogel. Qualities
such as thermal insulation (56.5 mWm'K), solar absorption (97.9%), and hydrophilicity
were reported by the study. This study lacks comparative analyses and evaluations of
MXene composite aerogel and other solar-thermal stills. The Al/CuO/MXene composite
containing 7.5 wt% Ti;C, MXene demonstrates optimal thermal stability and energy
release efficiency, making it the ideal choice for applications that demand high thermal
performance; however, when the Ti;C, MXene content is raised to 10 wt%. %, the composite
experiences a slight reduction in heat release (Cheng et al., 2023). MXene nanofluids
demonstrated superior stability compared to graphene due to Ti;C,T,’s hydrophilicity
(Wang et al., 2021). MXene improved the black paint coating’s solar absorptivity and
thermal conductivity by 0.1 w%. A 6.0% increase in water temperature caused by MXene
results in a 2.07 kg distillate yield. With 0.1 w%. MXene, the solar still’s average energy
efficiency was 36.31%. The work that previous researchers have done reveals the influence
on the thermal and photothermal conversion characteristics of STSs by adding MXene
as a microstructural modifier in solar thermal absorbers, which is summarized in Table 1.
MXene-based nanofluids, phase change materials, paints, and hydrogel-coated
cotton fabric have been widely covered, as summarized in Table 1. It can be deduced
that MXene has improved the thermal and photothermal conversion properties of solar
thermal energy systems, producing positive benefits in solar thermal absorbers made from
MXene-reinforced carbon nanotubes, phase-change materials, coatings, nanofluids, and
nanocapsules. These materials have been shown to improve conversion efficiency with
integration. MXene is added as reinforcement in paints used to coat the surfaces of solar
thermal absorbers and as a backing for metallic absorbers. However, literature on MXene-
reinforced metal matrix composites for solar thermal absorbers has not been reported.
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INFLUENCE OF MXENE ON THE CORROSION BEHAVIOUR OF SOLAR

THERMAL ABSORBER

Corrosion behavior describes the extent to which a material reacts and oxidizes or deteriorates
when subjected to environmental and atmospheric conditions that lead to chemical or
electrochemical reactions. The complex interaction between solar thermal absorbers of
STSs, their environments, and operational sequences greatly affects their chemical makeup.
Corrosion of solar thermal absorbers leads to huge economic losses and safety hazards in
the renewable energy sector, industry, agriculture, and domestic productivity. However,
the synthesis of MXene has led to a breakthrough in corrosion prevention of solar thermal
absorbers due to their exceptional practical properties, such as environmental and operational
stability, and their ability to form a thick, impenetrable layer covering the metal surface that
keeps corrosive substances from attacking the metal substrate. Cao (2024) stressed that
two-dimensional (2D) MXene composite coating integration creates a wealth of options
for MXene-based coatings’ multifunctional uses, particularly in corrosion protection. The
labyrinth effect of MXene, coupled with the corrosion-inhibiting effects in PDA, and the
establishment of favorable compatibility between the PDA-functionalized MXene 2D
material and the WPU matrix are contributing factors to the enhanced corrosion and wear
characteristics in WPU@PMXene composite film. Table 2 summarizes the influence of
MXene on the corrosion behavior of solar thermal absorbers.

Table 2
Summary of the recent studies on the influence of MXene on the corrosion behavior of solar thermal absorbers

Authors & Title/Focus of

Year Work Materials Medium Findings
Sreekumar, Energy efficiency 0.15 wt.%, C-dot, 0.1 M The hybrid nanofluid exhibited
Shaji et al., and chemical 0.1 wt.% MXene, solution  the minimum corrosion rate of 0.6
2024 stability through and 0.15 wt.%, of NaCl ~ mmy! in corrosion analysis.

the application of hybrid nanofluids
MXene/Carbon-dot  respectively.

hybrid nanofluid
Chen etal., The MnO,/V,C MnO,/MXene 3.5wt.%  Stronger corrosion qualities under
2024 composite has (Ti;C,, Nb,C, and  solution acidic conditions, with weaker
effective microwave V,C) composites  of NaCl corrosion qualities under alkaline
absorption abilities conditions

and robust anti-
corrosion qualities

Kalidasan ~ Enhancement of MXene@SSD/ Materials Al metal SSD/SPDD eutectic
etal., 2024  corrosion resistance, SPDD is placed are placed PCM has an m per year of 0.0181;
thermal, and photo-  in contact with in contact MXene at the SSD/SPDD sample
thermal conversion  aluminum, Salt has an m per year of 0.0045.
hydrate phase Cu under SSD/SPDD eutectic PCM
change materials, is 0.0131 m per year; MXene at
and copper SSD/SPDD is 0.0004 m per year.
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Table 2 (continue)

Authors & Title/Focus of

Year Work Materials Medium Findings

Cao, 2024  MXene-based MXene-based Good intrinsic surface protection
coatings for surface  coatings ability of MXene
protection against
corrosion

Nazarlou et Polyaniline Ti,C, MXene/ 3.5wt.%  The maximum corrosion rate (Veo)

al., 2023 Ti;C, MXene / Polyaniline/ solution is attributed to the neat powder
montmorillonite Montmorillonite of NaCl  film (2.45 mm per year), which
nanostructures has been kept to the minimum
toward solvent-free values of 1.21 x 107!, 1.06 x
powder coatings 102, and 8.94 x 105 mm per year
with improved through integrating 1.5 wt.% Ti;C,
corrosion and MXene, 2 wt.% % Ti;C, MXene/
mechanical qualities PANI, and 1.5 weight % Ti,C,

MXene/PANIand MMT additives,
respectively

Lietal., Corrosion and Wear  Ti;C, T, MXene/ 3.5wt.%  63.47%, 97.89%, 99.74%,

2024 characteristics polyurethane film  solution  respectively. resistance efficiency
enhancement on magnesium of NaCl
via Dopamine- alloy
Functionalized
Ti;C,Tx MXene/
Waterborne
Polyurethane film on
Alloy Magnesium

INFLUENCE OF MXENE ON THE MECHANICAL CHARACTERISTICS
OF SOLAR THERMAL ABSORBER

The functional integrity and the ability of a thermal system to withstand loads, stresses, and
environmental conditions without failure or deformation can be accessed by its mechanical
qualities, primarily plasticity and elasticity. Depending on the nature and magnitude of
the loading, in STSs, the most common loadings are thermal and mechanical (Sharma &
Talukdar, 2024). Recent findings on the influence on mechanical properties of solar thermal
systems by the addition of MXene as a microstructural modifier in solar thermal absorbers
are presented in Table 3.

However, weight concentrations ranging from 0.1-7.5 wt.% are the quantum of MXene
enhancing the mechanical stability and load-bearing performance in solar thermal absorbers
(Cheng et al., 2023; Fan et al., 2024; Ji et al., 2024; Singh et al., 2024; Y. Zhou et al.,
2024) This was attributed to their layered architecture, atomic structures, robust bonding
with matrix materials, high aspect ratio, outstanding mechanical strength, and effective
interfacial interactions.
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Table 3
Summary of the latest literature on the influence of MXene on the mechanical characteristics of solar thermal
absorbers

Authors & Title/Focus of Work Materials  Parameter Findings
Year
Yu et al,, Preparation of deep eutectic Cellulose-  Mechanical — mechanical properties
2024 supramolecular polymer based properties, (2.68 MPa)
(DESP) functionalized MXene fabrics, photothermal
for enhancement of corrosion MXene conversion
characteristics, photothermal nanosheets
conversion, and mechanical behavior
AhadiParsa Modification of MXene nanosheets  Ti;C, Thermo- Increase the stiffness
etal., 2024 for improved mechanical stability MXenes mechanical  of nanocomposites
Zn-doped-S- properties by at least 1.04%
polyaniline (EP-MX) and at most
nanosheets 72.38%
T. Wang et Surface protection on aluminum Thin Ti;C,T, Corrosion, The incorporation of
al., 2024 alloy in PEMFC environments, MXene, Al  mechanical =~ MXene remarkably
electrodeposited Ti;C,T, MXene alloy properties reduced the wear
composite coating for improved rate to 3.82x1073
mechanical properties mm’N'm™.
Lvetal., Investigation of mechanical, MXenes Mechanical  The lattice constants
2024 adhesive, and electronic properties of aluminum properties are a=4.045 A for
Ti;C4(0,)/Al composites, enhancing  metal matrix bulk Alanda=b=
the mechanical properties of composites 3.073 A for TisC,
aluminum matrix composites MXene. The tensile
strength of the material
increases from 6.93
Giga Pascal (Ti;C,/Al)
to 8.49 Giga Pascal
(Ti;C,0-/Al)
Yang et al., Application of 2D MXene Polyetherke- Mechanical = The CF/PEKK
2023 (Ti;,C,Tx) for modification of the toneketone  properties composites present
interface of carbon fiber-reinforced (PEKK), superior mechanical
polyetherketoneketone interfacial carbon properties with a
CF/PEKK composites, MXene for fiber (CF), flexible strength of
improved mechanical properties, and MXene 1127 MPa, a flexible
concurrent enhancement of the EMI modulus of 81 GPa,
shielding performances of CF/PEKK and ILSS of 89 MPa
CONCLUSION

This study evaluates all the most recent and relevant research on MXene-reinforced
absorbers published between 2020 and 2024 with a primary focus on STSs. The analysis
examines MXene microstructures, structure, phase patterns, composition, weight
concentration, findings, weaknesses, and comments. The review confirmed using metallic
absorbers, primarily aluminum, copper, and steel-based, with and without coatings. This
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is attributed to their bonding, electron matrix, a sea of electrons surrounding the electrons,
and their valences.

MXenes have both accordion-like multilayer structures, which are wavy, flexible, and
have a less dense morphology, and self-stacking layered structures, which are compacted
and strong due to very strong Van der Waals forces. The self-stacking structure exhibits
6-41° peaks and 002, 004, 008, and 110 hkl values. The prominent ones are 002 and 004,
between 6.9° and 9.5°. The self-stacking structure exhibits higher thermal conductivity.
MXene has yielded encouraging results for improving the thermal and corrosion
characteristics of solar thermal energy systems, reinforced nanofluids, phase change
materials, coatings, carbon nanotubes, and nanocapsules, which have shown improved
results. MXene used as the backing of metallic absorbers and in paintings has also shown
significant impacts on the thermal and corrosion qualities of STSs. It is also worth noting
that the improvement may be influenced by MXene’s microstructures, weight concentration,
composition, manufacturing processes, solar radiation conditions (such as wind speed and
humidity), weather cycles, day/night frequencies, and experimental design.

There is a positive correlation between corrosion resistance and the strength of the
absorber, which usually results in the creation of a martensitic phase and the transformation of
the microstructure. The invention of MXene-modified absorber materials in STS technology
has brought significant advancements in domestic, agricultural, and industrial heating and
cooling. Their unique properties, such as conductivity, tunable surface chemistry, and
hydrophilic nature, as well as their two-dimensional layered, stacked, and accordion structure,
make MXenes a leading material for microstructural modification of absorbers in STSs. The
exploration of MXene-based nanofluids, PCM, nanocellulose, coatings, micro-encapsulation
and nanocomposites has unveiled improved thermal stabilities, photothermal conversion,
and thermal conductivity of the matrices and enhanced the general performance of STSs.

However, recent literature has deduced that the integration of significant weight
percentages ranging from 0.1 wt.% to 7.5 wt.% in nanofluids, phase change materials,
coatings, and metallic absorber backing material yielded significant performance
improvements in STSs. However, when the Ti;C, MXene content is raised to 7.5 wt.%,
the composite experiences a slight reduction in heat release.

Agglomeration, complexity of composite manufacturing processes, lack of sufficient
literature, and sedimentation were the factors restraining the production of MXene-
reinforced metallic composites for absorption in STSs. By solving these essential
constraints, materials scientists, technologists, and engineers may successfully fabricate
MXene-reinforced metallic absorbers for STSs. This would significantly improve the
qualities of solar thermal absorbers and the overall performance of STSs.

Among all the composites manufacturing processes, PM offers more advantages, such
as density, cost-effectiveness, energy economy, dimensional precision, and production
speed, while wire-arc additive manufacturing has a heterogeneous microstructure. Fusion
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processes, unlike PM, require melting, are high energy, have environmental effects, and
use complex equipment, making them more expensive. PM offers material efficiency,
dimensional accuracy, energy efficiency, and production speed.

While MXenes have shown remarkable performance in modifying the microstructures
of significant non-metallic-based solar thermal absorber materials, the potential of
reinforcing MXenes with other metallic-based absorbers, especially aluminum, copper,
silver, or iron-carbide alloys such as stainless, galvanized, or mild steels, remains largely
unexplored. Evaluating the influence of MXene in modifying the structure of these materials
might lead to microstructural transition and phase patterns with significant effects on their
long-term photothermal and thermomechanical stabilities in solar thermal absorbers. This
could unlock the previously untapped MXene potential.

The potential effects of MXenes on the quality of drinking water, particularly regarding
nanoparticle leaching, should be investigated and compared with the World Health
Organization standard.

Future research in solar thermal absorber composites should focus on optimizing
MXene weight concentrations in reinforcing metallic solar absorbers. Exploring MXene’s
potential for corrosion and thermal conductivity phases could promote the efficiency of
STSs. Al-based prediction techniques could also be integrated to determine the optimum
weight % of MXene to be added to the metal matrix for an efficient solar thermal absorber.
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